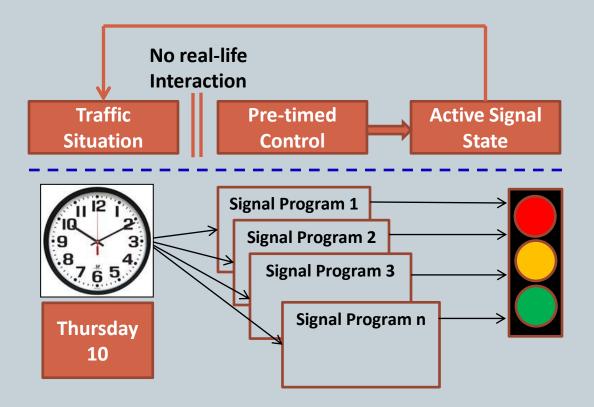


ADVANCED TRAFFIC SIGNAL CONTROL SYSTEM IN INDIAN CITIES

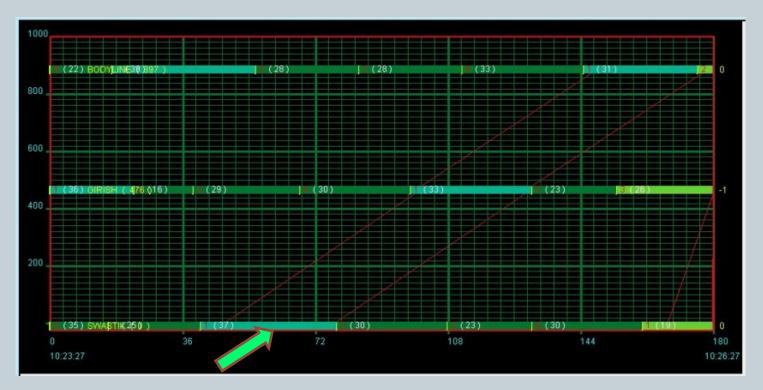
P Ravikumar, Joint Director

Intelligent Transportation and Networking Section (ITNS) Centre for Development of Advanced Computing (C-DAC) Thiruvananthapuram 695033


Traffic Signal Controllers in India

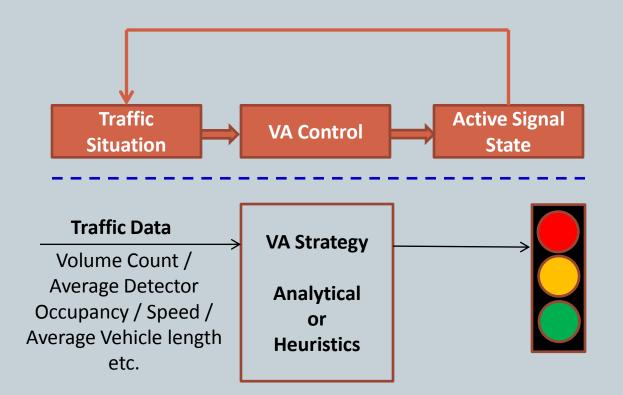
Most of them are Pre-timed

- Simple and inexpensive
- Signal timings derived from the statistical data
- Duration and order of all green phases are fixed
- Cannot respond to real-time demand
- Few Vehicle Actuated Signal Controllers
 - Signal timings based on real-time traffic demand
- Very few Adaptive Traffic Control Systems
 - Real-time signal control applied to a network of traffic junctions


Pre-timed Traffic Signal Controller (Isolated / Coordinated)

Coordinated Signal Control

- A technique to reduce stopped delay and improve travel time
- Provides progressive green signal at consecutive intersections when travelled at specified speed



Myth about Signal Coordination

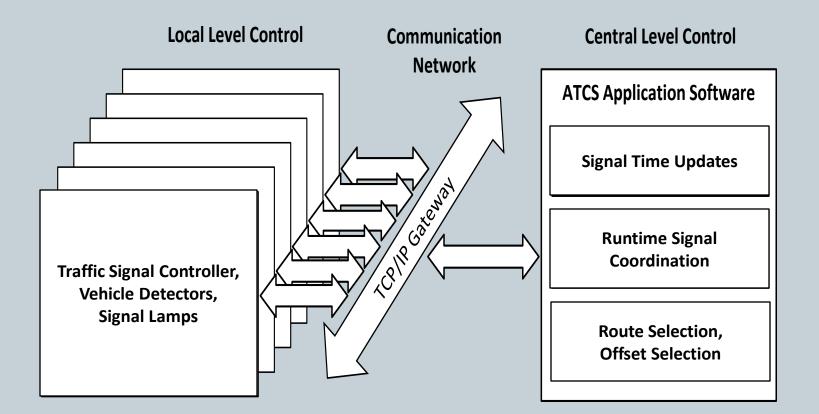
- Any type of junctions can be coordinated
 - Junctions of similar characteristics only can be coordinated (e.g. junctions requiring more or less same cycle lengths)
- All vehicles in the platoon get green signal at all consecutive junctions
 - Signal coordination can be assumed for 70-80% vehicles in the platoon
- The signals can be coordinated in all direction
 - Generally the direction of maximum flow only is coordinated

Vehicle Actuated Traffic Signal Controller (Isolated / Coordinated)

Vehicle Detection

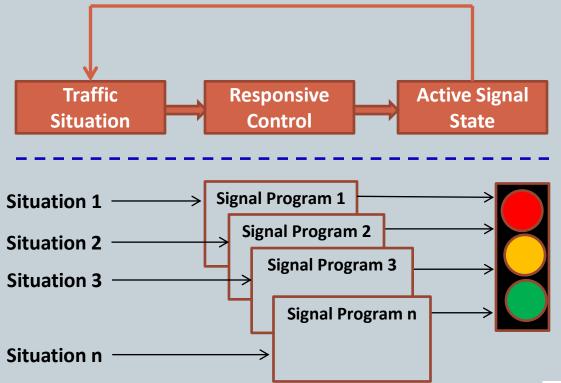
- Inductive Loop
- Camera
- Microwave Radar
- Thermal Camera
- Piezoelectric
- Magnetic

• ----



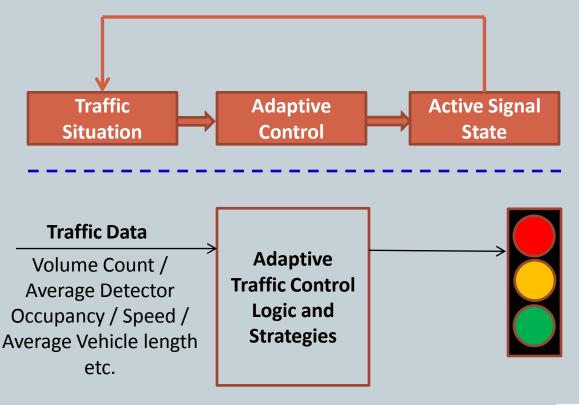
Advanced Traffic Signal Control System

- Provides real-time signal coordination for a group of traffic signals based on real-time traffic demand
 - Phase timings, Cycle lengths
 - Signal coordination route
- Operates in two levels
 - Local level : Traffic Signal Controller and other field equipment
 - Central level : ATCS application software running on a computer
 - Both levels are networked on a robust communication backbone
- Generates decision support reports and logs
- Supports remote Monitoring and Administration


ATCS Overall Block diagram

Traffic Responsive Signal Controller (Traffic Network – Real time signal coordination)

• Appropriate signal plan selected from a library of coordinated signal plans based on the real-time traffic demand



Adaptive Signal Controller

(Traffic Network – Real time signal coordination)

• Appropriate signal plan generated based on the real-time traffic demand

Operational Categorization of ATCS

ATCS	Detection	Action	Time Frame	Model	Timings
ACS Lite	SL, MB, US	P & R	5-10 Mins	No	S.O
Balance	NSL	P & R	5 Mins	Yes	S.Cl.O.PS
InSync	NSL	P & R	Phase / Cycle / 15 Mins	Yes	S.Cl.O.PS
LA ATCS	SL, US	P & R	Cycle	Yes	S.Cl.O
MOTION	NSL	P & R	5-15 Mins	Yes	S.Cl.O.PS
OPAC	MB , SL	Р	Phase / Cycle / 5 Mins	Yes	S.Cl.O
RHODES	MB , SL	Р	Sec-by-Sec	Yes	S
SCATS	SL, NSL, MB	R	Cycle	No	S.Cl.O
SCOOT	US , SL	P & R	Cycle / 5 Mins	Yes	S.Cl.O.PS
UTOPIA	US, SL	Р	3Sec / 5 Mins	Yes	S.PS
CoSiCoSt	SL , NSL	R	Cycle	No	S.Cl.O

Model based

- Use macroscopic, mesoscopic, or microscopic models to estimate the current state of traffic
- The estimated value is further used as an input to adjust signal timings
- Most of the currently operational ATCS are Model based
- Non-model based
 - Based on functional relationship between parameters that describe change of traffic conditions
 - Use feedback of the traffic measured during the previous interval

Myth about ATCS

- ATCS Solves all urban traffic problems.....
 - In reality it helps in improving the traffic conditions
 - Increased lane carrying capacity and travel speeds
 - Reduction in delay, stops, queue, fuel consumption, emissions and drop in accident rate
 - Better Traffic Management Green Wave Routes, Diversions, Incidents Detection

Myth about ATCS

- All ATCS Optimizes all timing parameters......
 - The reality is that some of them perform some kind of optimization, which is usually constrained by its domain or time allowed to conduct the optimization process
 - Some of these optimizations use heuristic techniques, whereas others use extensive search techniques, to find solutions
 - Others do not formally optimize (no search process and no objective function); instead, they adjust signal timings by using some heuristic methods and common traffic engineering concepts.

ATCS Philosophy

- An area is divided into corridors of closely spaced traffic junctions having similar flow characteristics and, synchronize them independently based on real-time demand
- Signal Coordination is achieved by
 - Phase Sequencing: Not used widely because of the negative impacts due to frequent transitions. Not permitted in many countries
 - Common Cycle time method: Consider Cycle length, Phase length and Offset as the fundamental parameters for signal synchronization

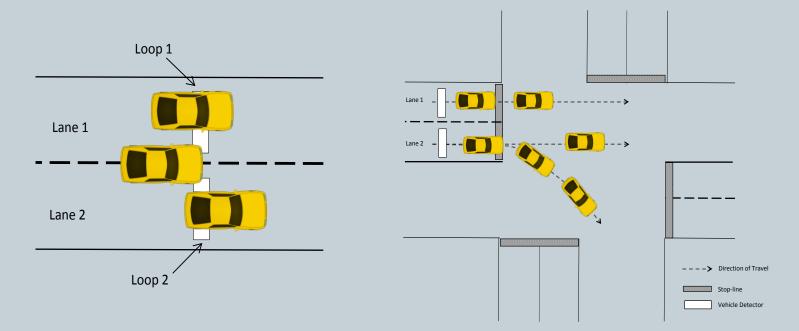
Advanced Traffic Signal Control Systems in India

- Delhi SCOOT
- Mumbai ITACA

Model based Proactive and Reactive

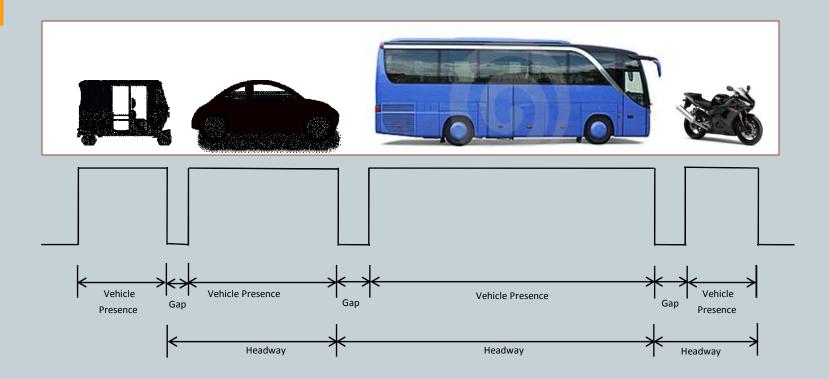
Jaipur – CoSiCoSt

Non-model based Reactive

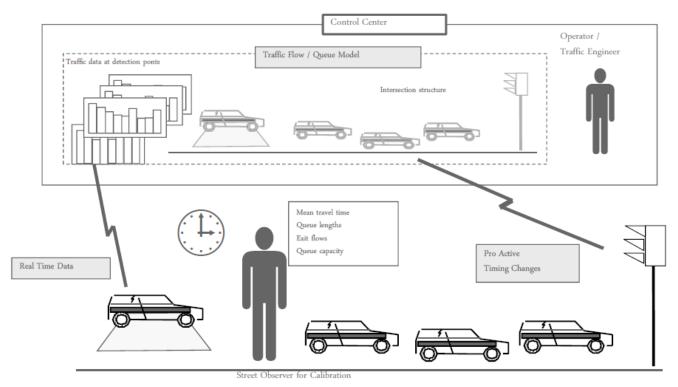


How Adaptive are the Adaptive Traffic Control Systems on our Road...

- The analytical models are constrained by inadequate input data
 - Low level of lane discipline
 - High mix of traffic
 - Higher percentage of two wheeler population
 - Poor junction geometry
- And we are constrained by
 - Lack of expertise
 - Power and Network connectivity interruptions


Non-lane based driving

- Deriving the critical parameters in real-time for vehicle actuated signal control is highly complex
 - volume counts, turning proportion, headways and gaps


Mixed Traffic Flow Conditions

Data collection is more complex in mixed traffic flow conditions

Calibration is much more complex

Disclaimer: Operation of Telvent Adaptive Signal Control – information reproduced from public domain http://www.itscanada.ca/files/Reports/True%20Adaptive%20Telvent.pdf

8th Urban Mobility India

PDF documents to Excel.

What is required...

- Handle non-lane based mixed traffic flow conditions
- Implementation of Complex Phasing Schemes
- Self-calibrating for Phase lengths and Cycle lengths
- Dynamic Route Selection
- Real-time Signal Coordination
- Fallback operation in Vehicle Actuated mode
- Remote Monitoring and Administration
- Scalable
- Decision Support Reports
- Local Expertise
- Simulator interface

Relevance of the topic

• Adaptive Traffic Signal Control (ATCS) is one of the major components of all Smart City Mission Projects

9th Urban Mobility India 2016

END OF PRESENTATION

ravikumar@cdac.in